Safety and Miscellaneous Sensors

7.1 Boroscopes 872
Introduction 872
Illuminated Rigid Fiber Boroscopes 873
Flexible Illuminated Fiberscopes 873
Special-Purpose Systems 874
Bibliography 874

7.2 Electrical and Intrinsic Safety 875
Introduction 876
Enclosures 876
NEMA Terminology 876
IP Terminology 877
Fuses and Circuit Breakers 877
Grounding 877
Personnel Safety 878
Energy Levels 878
Explosion Hazards 878
NEC Definition of Hazardous Locations 879
IEC Definition of Hazardous Locations 880
Explosions 880
Protection Methods 881
Advantages and Disadvantages of Protection Methods 881
Safety 881
Cost of the Instrument 881
Cost of Installation 881
Maintenance 882
Flexibility 882
Purging, Pressurization, or Ventilation 882
Air Supply 882
Initial Purging 883
Pressure 883
Alarms and Interlocks 883
Classification of Purging Systems 883

7.3 Electrical Meters and Sensors 889
Introduction 890
Analog Measuring Instruments 890
Permanent Magnet Moving Coil Instruments 892
Electronic Components 892
Moving Iron Vane Instruments 893
Electrodynamic Instruments 893
Electrostatic Instruments 893
Digital Measuring Instruments 894
Wattmeters 894
Utilization of Electrical Meters 894
Current Measurement 894
AC Current 894
Current Transformers 896
Primary Turns 896
Secondary Turns 896
Polarity and Inaccuracy 897
Hall Effect Probes 897

© 2003 by Béla Lipták
7.4 Energy Management Devices (Peak Load Shedding) 903

Introduction 903
Load Shedding Systems 903
Peak Shedding System Costs 904
Electrical Demand 904
Demand Load Shedding 904
Start Signals for Demand Periods 905
Shedding Controls 905
Electromechanical Devices 905
Electronic Demand Limiters 905
Digital Systems 905
Conclusions 906
Bibliography 906

7.5 Excess Flow and Regular Check Valves 908

Introduction 908
Valve Designs 908
Operation 908
Applications 909
Rupture Disc Leakage 909
Gas Station Application 910
Sizing 910
Installation 910
Testing 910
Bibliography 910

7.6 Explosion Suppression and Deluge Systems 912

Introduction 912
Explosion Suppression Systems 912
Explosions 913
Explosion Bomb Test 913
How Suppression Works 913
Explosion Characteristics 914
Suppressant Chemicals 914
Explosion Suppression Hardware 915
Detectors 915
Temperature 915
Infrared Radiation 915
Ultraviolet Radiation 915
Pressure 915
Control Units 916
Actuated Devices 916
Suppressors and Extinguishers 916
Explosive-Actuated Rupture Discs 916
Other Auxiliary Units 917
Applications 917
Ultra-High-Speed Deluge Systems 917
Detectors 917
Control Units 917
Actuated Devices 917
High-Speed Deluge Valve System 918
Pressure-Balanced Nozzle System 918
Applications 918
Bibliography 919

7.7 Flame Arresters, Conservation Vents, and Emergency Vents 920

Introduction 921
Types of Vents 921
Conservation Vents 921
When to Use Conservation Vents 923
Determination of Required Capacity 923
Sizing 924
Emergency Vents 925
Dessicating Vents 925
Flame Arresters 926
Bibliography 927

7.8 Flame, Fire, and Smoke Detectors 928

Introduction 929
Fire and Smoke Detectors 929
Smoke Detectors 929
Ionization Chamber Sensors 929
Photoelectric Sensors 929
Thermal Sensors 929
Flame Sensors 929
Types of Optical Flame Sensors 930
Ultraviolet Detectors 930
Infrared Detectors 931
UV/IR Detectors 931
Dual IR 931
Multispectrum IR 931
Closed Circuit Television 931
Flame Safeguards (Burner Management) 931
Heat Sensors 931
Conduction-Type Detectors 932
Rectification 932
The Rectification Phenomenon 932
Radiation Types 932
Visible Radiation 932
Cadmium-Sulfide Photocell 933
Infrared Radiation 933
Lead-Sulfide Photocell 933

© 2003 by Béla Lipták
7.9 Leak Detectors 936

Introduction 937
Aboveground Leak Detection Methods 937
Pressurization or Hydrostatic Testing 937
Using Paints, Dyes, or Bubble Emission 937
Combustible or Toxic Leaks 938
Personnel Alarms 938
Ultrasonic Detectors 938
Thermal Conductivity Detectors 939
Halogen Detectors 939
Other Techniques 940
Loss of Vacuum 940
Thermography 940
Mass Spectrometer 940
Underground Leakage Detection 940
Level Monitoring 940
Soil Detectors 940
Aspirated Sensors 941
Standpipe Detector 942
References 942
Bibliography 942

7.10 Linear and Angular Position Detection 944

Introduction 945
Applications 945
Mounting 945
Sensor Types 945
Potentiometric Sensors 945
Voltage and Current Methods 945
Advantages and Limitations 946
Linear Variable Differential Transformer Type Sensors 946
Magnetostrictive Sensors 946
Hall Effect Sensors 947
Rotary Sensor 948
Transmitters 948
Encoder Type Sensor 948
Transmitter Technologies 949
Analog Transmitters 949
Fieldbus Transmitters 950
Bibliography 950

7.11 Machine Vision Technology 951

Introduction 951
Linear Diode and Linear Charge-Coupled Device Arrays 952
Example Project 953
Two-Dimensional CCD and Diode Arrays 953
Analog Display Modes 953
Serial Data Transmission 954
Vector Graphics Formats 954
Computer Graphics and Machine Vision 954
References 954

7.12 Metal Detectors 955

Introduction 955
Detector Types 956
Installation on Conveyor Belts 956
Other Applications 956
Bibliography 957

7.13 Noise Sensors 958

Nature of the Measurement 958
Transducer Principles 959
The Inductive Principle 959
The Moving-Conductor Principle 959
Dynamic Microphones 960
Capacitor Microphones 960
Piezoelectric Microphone 960
Microphone Types 960
Ribbon Microphone 960
Diaphragm Microphone 960
Special Microphones 960
Parabolic Reflector Microphone 961
Special Purpose and Ultrasonic Units 961
Microphone Characteristics 961
Sound Sensitivity, Incidence, and Direction 961
Frequency and Amplitude Ranges 962
Hydrophones 962
Environmental Considerations 962
Calibration 963
Reference 963
Bibliography 963

7.14 Proximity Sensors and Limit Switches 964

Introduction 965
Capacitive Sensors 965
Inductive Sensors 966
Magnetic Sensors 967
Hall-Effect Sensors 967
Linear Variable Differential Transformer Sensors 967
Mechanical Limit Switches 968
Optical Sensors 968
Light Sources 969
Light Detectors 969
Optical Detector Installations 969
Reflective 969
Retroreflective 970
7.15 Relief Valves—Determination of Required Capacity 973

Introduction 973
Applicable Codes and Standards 973
ASME Codes 973
Excerpts from ASME Code 973
UG-125(c) 973
UG-126(b) 974
UG-126(c) 974
UG-126(d) 974
UG-131(d)(1) 974
UG-133(a) 974
UG-133(b) 974
UG-134(d)(1) 974
UG-134(d)(2) 974
API Standards and Recommended Practices 974
NFPA Codes 974
OSHA Codes 975
Causes of Overpressure 975
Substituting for Pressure Relief Devices 975
Fire Protection 975
Gas-Filled Tanks 975
Heat Absorption Across Unwetted Surfaces 975
Low Liquid Inventory Tanks 976
Heat Flux Across Wetted Surfaces 976
Total Heat Absorption 976
API Recommendation 976
NFPA Recommendations 976
Low-Pressure Tanks 977
Free Air Calculation 978
Wetted Area (A) 979
API or NFPA 981
Tank Shape 981
Fire Zone 981
Fire Height 981
Vertical Tanks 981
Horizontal Tanks 982
Environmental Factors 982
API’s Environmental Factors 982
API and NFPA Environmental Factors 982
Calculating the Relieving Capacity 983
Latent Heat of Vaporization 983
Protecting Liquid-Full Tanks 983
Fluids at the Critical Point 983
Nonfire Protection Overpressure 983
Thermal Expansion 984
Set Pressure and Sizing 984
Blocked Outlet Conditions 984
Sizing the PRV 984

7.16 Relief Valves—Sizing, Specification, and Installation 991

Introduction 992
The Nature of PRVs 992
The Purpose of PRVs 992
System Integrity and Noise 992
Reliability, Testing, and Redundancy 994
Safety Checklist 994
The Sizing of PRVs 994
Backpressure 994
Superimposed Backpressure 994
Built-Up Backpressure 995
Backpressure Effects 995
Sizing for Vapor and Gas Relief 996
Graphical Method 996
Sizing by Calculation 996
Critical Flow Sizing 997
Subcritical Flow Sizing 999
Backpressure Effect on Capacity 999
Sizing for Steam Relief 999
Sizing for Liquid Relief 1000
Calculating the Discharge Area 1000
Viscosity Correction 1001
Sizing for Flashing Liquid Relief 1001
Special Cases 1002
Specification and Selection 1002
Conventional PRVs 1004
PRV Bodies and Bonnets 1004
Seat and Spring 1005
Nozzles and Blowdown Rings 1005
Pop Action 1005
Valve Lift and Capacity 1005
Balanced PRVs 1005
Pilot-Operated PRVs 1005
Integral or External Pilot 1007
Advantages 1007
Disadvantages 1007
Modulating Pilot-Operated Valves 1008
When to Consider Pilot-Operated PRVs 1008
Specification and Selection Checklist 1009
PRV Operation and Performance 1010
Blowdown 1010
Setting the Blowdown 1010
PRV Chatter 1011
Chatter and Inlet Line Loss in POPRVs 1011
Chatter on Liquid Service 1011
PRV Tightness and Leakage 1011
Using Two PRVs 1011
Seat Designs, O-Rings, and Temperature 1012
Flatness and Cleanliness 1013
PRV Installation 1014
PRV Location 1014
PRV Mounting 1014
PRV Inlet Piping 1014
PRV Outlet Piping 1014
Calculating the Reaction Force 1015
PRV Block Valves 1015
Multiple PRVs 1015
Spare PRVs 1015
Test, Inspection, and Audit 1015
PRV Testing 1016
PRV Inspection 1016
PRV Audit 1016
References 1016
Bibliography 1016

7.17
Rupture Discs 1018
Introduction 1018
Definitions 1018
Code Requirements 1019
Rupture Discs vs. Relief Valves 1019
When to Use a Rupture Disc 1020
As a Primary or Sole Relief Device 1020
As a Supplemental Relieving Device 1020
Upstream of a Relief Valve 1021
Downstream of a Relief Valve 1021
Explosion Relief 1022
Rupture Disc Types and Features 1022
Nonfragmenting Discs 1022
Graphite Discs 1022
Vacuum Supports 1023
Back-Pressure 1023
Margin between Operating and Burst Pressures 1023
Dual Discs or Back-Pressure Loading 1024
Special Applications 1024
Pressure Cycling and Water Hammer 1024
Two-Way Relief 1024
Self-Cleaning and Corrosive Services 1024
Explosive Actuated Vents 1025
Selection and Specification 1025
Material Selection 1026
Burst Pressure and Manufacturing Range 1026
Operating Ratio 1027
Minimum Burst Pressure 1027
Disc Holders and Accessories 1027
Accessories 1028
Sizing 1028
Differences in Assumptions and Standards 1028
Coefficient of Discharge Method 1028
Resistance Method 1029
Combination Capacity Method 1029
Bibliography 1029

7.18
Soft Sensors 1030
Introduction 1030
Flow from Level 1030
Mass Flow from Pressure and ∆P 1030
Flow from Pump Speed and Power 1030
The Role of Networks 1031
Reasons for Using Soft Sensors 1031
Application Examples 1031
Detection of Instrument Failure 1031
Using Redundant Instruments to Advantage 1031
Sensorless Flux Vector Control 1032
Viscosity Control in Rubber Blending 1032
Determination of Errors 1032
Combining Instrument Errors 1032
General Expression for the Error 1032
Implementing the Error Calculation 1033
Digital Calculation Errors 1033
Digital Signal Processing 1033
Time Delay 1034
Implementation Considerations 1034
Integrators and Low-Pass Filters 1034
Low-Pass Filters 1034
Implementation Considerations 1034
Integrators 1035
Implementation Considerations 1036
Differentiators and High-Pass Filters 1036
Interpolation and Predictive Filters 1036
References 1037

7.19
Tachometers and Angular Speed Detectors 1038
Introduction 1039
Handheld Tachometers 1039
Tachometer Operating Principles 1039
Impulse Tachometers 1039
Optical Encoders 1040
Photoelectric Sensors 1040
Noncontacting Optical Tachometers 1040
Stroboscopic Tachometers 1041
Fiber-Optic Stroboscopes 1041
AC Tachometers 1041

© 2003 by Béla Lipták
DC Tachometer 1041
Induction Sensors 1041
Magnetic Sensors 1041
Inductive Sensors 1041
Hall Effect Sensor 1042
Magnetoresistive and Variable Reluctance Sensors 1043
Pneumatic Speed Transmitter 1043
Speed Switches 1043
Conclusions 1044
Bibliography 1044

7.20
Thickness and Dimension Measurement 1045

Introduction 1046
Dimension Measurement 1046
Automated Gauging Machines 1046
Thickness Gauging 1046
Contacting Gauges 1047
 Ultrasonic Thickness Gauging 1047
Noncontacting Gauges 1048
Capacitance Gauges 1048
Laser Gauging 1049
Optical Micrometer and Interferometers 1049
Radiation Type Thickness Gauges 1049
Coating Thickness Detection by Radiation 1050
Bibliography 1050

7.21
Torque and Force Transducers 1051

Force Measurement 1052
Measurement Principles 1052
Mechanical Dynamometers: Load Cells 1052
Sensing Elements 1053
Strain Gauges 1053
Piezoelectric Dynamometers 1054
Torque Measurement 1055
Rotating Transducers 1055
Direct Contact 1056
Inductive Coupling 1056
Stationary Transducers 1057
Magnetostriuctive Torque Transducer 1057
Angular Displacement Type Torque Transducers 1058
Conclusions about Torque Transducers 1058
Test Gauges and Test Stands 1058
References 1059
Bibliography 1059

7.22
Vibration, Shock, and Acceleration 1061

Introduction 1062
Acceleration as a Phenomenon and Dynamic Characteristics 1063
Vibration and Shock 1064
Periodic Vibrations 1065
Stationary Random Vibrations 1065
Nonstationary Random Vibrations 1065
Transients and Shocks 1065
Seismic (Inertial) Sensors 1067
Piezoelectric Sensors 1067
Piezoresistive and Strain Gauge Sensors 1068
Piezoresistive Sensors 1068
Strain-Gauge Sensors 1069
Electromechanical Sensors 1070
Coil-and-Magnetic Accelerometers 1070
Induction Accelerometers 1070
Capacitive and Electrostatic Sensors 1071
Electrostatic-Force-Feedback Accelerometers 1071
Capacitive Accelerometers 1072
Micro- and Nanosensors 1073
Velocity Sensors 1074
Noncontact or Proximity Sensors 1075
Mechanical-Magnetic Switches 1075
Optical Sensors 1075
Conclusions 1076
Reference 1076
Bibliography 1076

7.23
Weather Stations 1077

Introduction 1078
Meteorological Station 1078
Solar Radiation Measurement 1078
Historical Background 1079
Multijunction Thermopile 1079
Photovoltaic Cells 1079
Thermal Radiometers 1079
Pyrheliometers 1079
Wind Direction and Speed 1079
Wind Direction 1079
Wind Speed 1080
Rain Gauges 1080
Barometric Pressure Gauges 1081
Air Temperature Detection 1081
Dew Point and Relative Humidity Sensors 1081
Sensor Accessories 1081
Readouts 1081
Locations 1081
Instrument Shelters 1082
Bibliography 1082

7.24
Weighing Systems: General Considerations 1084

Introduction 1084
Weighing Glossary 1084
What is Weighing? 1086
Force and Weight 1087
Historical Considerations 1087
Advantages of Weighing 1087
Weighing Applications 1088
Weighing System Specification 1088
Weighing vs. Metering 1090
Bulk Weighing 1090
Weighing Platforms 1090
Weighing Platform Transducers 1090
Beam-Type Platforms 1091
Portable Platform Scales 1092
Truck, Monorail, and Railway Scales 1092
Truck Scales 1092
Treadle Scales 1092
Monorail Weighing Transducer 1092
Types of Weighing Systems 1093
Mechanical Lever Scales 1093
Spring-Balance Scales 1093
Load Cell Weighing 1093
Factors Influencing Performance 1094
Temperature Effects 1094
Mechanical Lever Scales 1094
Load Cell Weighing Systems 1094
Electronic Load Cells 1094
Hydraulic Load Cells 1094
Pneumatic Load Cells 1094
Errors Caused by Vibration 1094
Errors Caused by Ambient Conditions 1095
Maintenance Requirements 1095
Installation Requirements 1095
Vessel Stabilization 1095
Stabilizing Devices 1095
Piping Connections 1096
Types of Vertical Forces 1096
Spring Rates of Pipes 1098
Flexible Connections 1099
Calibration 1099
Bibliography 1100

7.25
Weight Sensors 1101
Introduction 1103
Load Cell Selection 1103
Selection Factors 1104
Mode of Loading: Tension or Compression 1104
Ambient Temperature 1105
Lateral Restraints 1105
Structure Vibrations 1105
Number of Load Cells 1105
Capacity and Type 1106
Load Cell Types 1106
Classes of Load Cells 1106
Load Cell Installation 1106
Load Cell Adapter 1107
Rocker Assembly 1108
Vessel Expansion 1108
I-Beam Flexure 1109
Expansion Assemblies 1109
Mechanical Lever Scales 1109
Balancing Devices 1109
Scale Ranges 1110
Applications 1110
Gravimetric Feeders 1110
Batch Additives 1110
Output Signals 1110
Advantages and Limitations 1110
Hydraulic Load Cells 1111
The Rolling Diaphragm Design 1111
Performance 1111
All Metal Design 1111
Hydraulic Totalizers 1112
Electronic Totalizers 1112
Other Features 1112
Pneumatic Load Cells 1112
Electronic Load Cells 1113
Strain-Gauge-Type Load Cells 1113
Operating Principle 1113
Design Variations 1114
Bending or Cantilever Elements 1114
Beam-Type Load Cells 1114
Shear Elements 1115
Direct Stress or Column-Type Elements 1115
Transducer Design 1116
Strain Gauge Backings and Bonding 1116
Strain Gauge Circuits 1116
Performance of Strain Gauge Load Cells 1117
Other Load Cell Designs 1117
Semiconductor Strain Gauge 1117
Nuclear Radiation Sensors 1117
Inductive Sensing 1118
Variable Reluctance Sensing 1118
Inductive and Reluctance Load Cells 1119
Magnetostrictive Sensing 1119
Magnetostrictive Load Cells 1119
Linearization of Load Cells 1120
Load Cell Housings and Safety 1120
Intrinsic Safety 1121
Special Application 1121
High Temperature Load Cells 1121
Weighing of Tank Legs 1121
Developing New Sensors 1121
New Load Cells 1122
Thin-Film Strain Gauges 1122
Hydraulically Damped Load Cells 1123
Microprocessors and Networks 1123
Interfacing with Programmable Logic Controllers 1123
The Role of the Personal Computers 1123
Verified Weighing with PCs 1123
Networks and Buses 1123
Calibration and Testing 1124
Aircraft Weighing 1124
Packaging Industry 1125
References 1125
Bibliography 1126
7.1 Boroscopes

Applications: Visual inspection of small, narrow or otherwise inaccessible areas in turbines, piping, engines, tanks, heating, ventilation, and air conditioning (HVAC) systems, boilers, pumps, valves, etc.

Types: Units can be permanently mounted on bench top or can be portable; units can have battery-operated self-contained illuminators or rechargeable shoulder-pack illuminators; the probe itself can be rigid, flexible, gooseneck sheathed, or provided with a viewing end tip that can flex up to 120°.

Diameters: From 0.118 to 2.75 in. (3 to 75 mm)

Lengths: For rigid designs, from 3 in. to 150 ft. (76 mm to 45 m); for flexible designs, up to 96 in. (2.4 m)

Resolution: Can identify flaws as small as 0.0005 in. (0.013 mm)

Field of View (FOV): From 20 to 120°

Costs: A portable fiberscope costs about $1500, a fiber-optic illuminator shoulder-pack costs about $800, and an articulating tip fiberscope costs about $3000. Units designed for an industrial environment can cost $10,000 or more.

Partial List of Suppliers: Aims Ndt (www.aims.nl)
Borescopes (www.boroscopes.com)
Cole-Parmer Instrument Co. (www.coleparmer.com)
Edmund Scientific Co. (www.edsci.com)
ITI Instrument Technology Inc. (www.scopes.com)
Karl Storz Endoscopy America Inc. (www.careers.ksea.com)
Lenox Instrument Co. (www.thomasregister.com/ole/lenoxinstrument)
Machida America Inc. (www.machidascope.com)
Mitsubishi Cable America Inc. (www.mcausa.com)
Olympus Co. (www.olympus.com)
Schott Fiber Optics (www.techexpo.com/firms/schottfi)
Titan Instruments (www.titanspecialties.com)
Titan Tool Supply Co. (www.titantoolsupply.com)
UXR (www.uxr.com)
Visual Inspection Technologies Inc. (www.waterdrop.com/visual)

INTRODUCTION

Boroscopes (also spelled borescopes) are visual inspection tools providing high image quality. They were originally designed for inspecting gun barrels, but currently have many applications in modern technology. They are used to inspect remote or limited access locations, such as drill holes, vessels and chambers, chemical reactors, heat exchangers, process lines, and much more. Illuminated boroscopes and fiberscopes provide bright, sharp images for visual observations and are camera-adaptable for permanent record keeping. They enable critical internal inspections with speed, safety,
7.1 Boroscopes

and certainty in the field or on the factory floor. Table 7.1a gives a partial list of applications that speed testing, inspection, and quality control.

Table 7.1a

<table>
<thead>
<tr>
<th>Aviation</th>
<th>Mobile Equipment Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>• turbine and compressor blades</td>
<td>• engines</td>
</tr>
<tr>
<td>• combustion chambers, fuel nozzles</td>
<td>• transmissions</td>
</tr>
<tr>
<td>• landing gear</td>
<td>• drive mechanisms</td>
</tr>
<tr>
<td>• airframes</td>
<td>• hydraulic components</td>
</tr>
<tr>
<td>Chemical and Petrochemical Processing</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>• piping</td>
<td>• structural integrity</td>
</tr>
<tr>
<td>• tanks</td>
<td>• equipment maintenance</td>
</tr>
<tr>
<td>• remote sight glasses</td>
<td>• weld quality</td>
</tr>
<tr>
<td>Power Generation</td>
<td>Architecture and Design</td>
</tr>
<tr>
<td>• boilers</td>
<td>• modeling</td>
</tr>
<tr>
<td>• reciprocating engines</td>
<td>• structural integrity</td>
</tr>
<tr>
<td>• heat exchangers</td>
<td>Rubber and Plastics</td>
</tr>
<tr>
<td>• turbines</td>
<td>• finished hose and tubing</td>
</tr>
<tr>
<td>• reactors</td>
<td>• injection molding rams</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Food and Pharmaceuticals</td>
</tr>
<tr>
<td>• castings</td>
<td>• piping</td>
</tr>
<tr>
<td>• tubing and pipe</td>
<td>• tanks and vessels</td>
</tr>
<tr>
<td>• hydraulic cylinders</td>
<td>• packaging lines</td>
</tr>
<tr>
<td>• complex assemblies in process</td>
<td></td>
</tr>
<tr>
<td>• rubber hose</td>
<td></td>
</tr>
<tr>
<td>Pipeline and Drilling</td>
<td></td>
</tr>
<tr>
<td>• drill pipe</td>
<td></td>
</tr>
<tr>
<td>• transport piping</td>
<td></td>
</tr>
</tbody>
</table>

Flexible Illuminated Fiberscopes

The flexible illuminated boroscope or fiberscope (Figure 7.1c) allows for inspection of the most difficult-to-reach spots. The semirigid gooseneck sheathing can be bent through multiple angles to clear almost any obstruction. There are two separate bundles inside the scope. The image bundle contains thousands of fibers precisely arranged at each end so that each fiber is in the same position at both ends of the bends.

The illuminating halo bundle, or the light guide bundle, carries light from an external light source to illuminate the viewing area. The fibers in these bundles are drawn from high-quality optical glass and are coated or clad with another glass which has a lower refractive index. The outer layer prevents light that enters the tube from escaping or passing through the sides to another fiber. The fibers are drawn small enough to be flexible and very rugged. These flexible fiberscopes can withstand repeated bending and flexing.

A fixed-focus objective lens is used to image the object onto the end of the bundle. The image is transmitted through the image bundle to the other end of the fiberscope, where an adjustable eyepiece magnifies the image for viewing. The unit can be used for straight-through viewing or 90° viewing by attaching the right angle tip to the objective lens.

The eyepiece can be adjusted for the individual operator’s eye requirements. Like the rigid boroscope, it can be used with camera, video recorder, and TV monitor. Working lengths of up to 96 in. (2.4 m) are available.

© 2003 by Béla Lipták
Chamberscopes offer greater magnification than conventional rigid boroscopes. They include high-intensity lighting and variable direction of view, and also allow examination of areas in large cavities at a distance up to 36 in. (0.9 m), particularly within vessels and engines.

Periscopes allow examination of hazardous processes or dangerous areas. They are designed for extreme radiation, high pressure or temperature, or underwater applications.

Vacuum and high-pressure boroscopes allow observations and recordings of images inside vacuum chambers and inside vessels under high pressures and temperatures. They allow documentation with photographic or video cameras.

Bibliography
